Search results for "GRADIENT ELASTICITY"
showing 10 items of 14 documents
A second strain gradient elasticity theory with second velocity gradient inertia – Part II: Dynamic behavior
2013
Abstract This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations …
A gradient elasticity theory for second-grade materials and higher order inertia
2012
Abstract Second-grade elastic materials featured by a free energy depending on the strain and the strain gradient, and a kinetic energy depending on the velocity and the velocity gradient, are addressed. An inertial energy balance principle and a virtual work principle for inertial actions are envisioned to enrich the set of traditional theoretical tools of thermodynamics and continuum mechanics. The state variables include the body momentum and the surface momentum, related to the velocity in a nonstandard way, as well as the concomitant mass-accelerations and inertial forces, which do intervene into the motion equations and into the force boundary conditions. The boundary traction is the …
Wave propagation in 1D elastic solids in presence of long-range central interactions
2011
Abstract In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kroner–Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is …
The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions
2010
Abstract This paper presents the generalization to a three-dimensional (3D) case of a mechanically-based approach to non-local elasticity theory, recently proposed by the authors in a one-dimensional (1D) case. The proposed model assumes that the equilibrium of a volume element is attained by contact forces between adjacent elements and by long-range forces exerted by non-adjacent elements. Specifically, the long-range forces are modelled as central body forces depending on the relative displacement between the centroids of the volume elements, measured along the line connecting the centroids. Further, the long-range forces are assumed to be proportional to a proper, material-dependent, dis…
Stress gradient versus strain gradient constitutive models within elasticity
2014
Abstract A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Helling…
A theoretical link between gradient and nonlocal elasticity models, including higher order boundary conditions
2013
The paper presents a recently developed rational derivation of the strain gradient elasticity model from the nonlocal (or integral) model. This kind of derivations are generally recovered just by an expansion into a Taylor series of the nonlocal strain field up to a certain order, and then operating the integration (or averaging) over the spatial interaction domain. The latter procedure is fully consistent when the analysis is performed over an unbounded domain, but when a classical bounded domain is analyzed it lacks in reproducing the so-called higher-order boundary conditions. In the present contributions the complete derivation is achieved employing an extended version of the Principle …
Hellinger-Reissner variational principle for stress gradient elastic bodies with embedded coherent interfaces
2017
An Hellinger-Reissner (H-R) variational principle is proposed for stress gradient elasticity material models. Stress gradient elasticity is an emerging branch of non-simple constitutive elastic models where the infinitesimal strain tensor is linearly related to the Cauchy stress tensor and to its Laplacian. The H-R principle here proposed is particularized for a solid composed by several sub-domains connected by coherent interfaces, that is interfaces across the which both displacement and traction vectors are continuous. In view of possible stress-based finite element applications, a reduced form of the H-R principle is also proposed in which the field linear momentum balance equations are…
Solution strategies for 1D elastic continuum with long-range interactions: Smooth and fractional decay
2010
Abstract An elastic continuum model with long-range forces is addressed in this study within the context of approximate analytical methods. Such a model stems from a mechanically-based approach to non-local theory where long-range central forces are introduced between non-adjacent volume elements. Specifically, long-range forces depend on the relative displacement, on the volume product between interacting elements and they are proportional to a proper, material-dependent, distance-decaying function. Smooth-decay functions lead to integro-differential governing equations whereas hypersingular, fractional-decay functions lead to a fractional differential governing equation of Marchaud type. …
Strain gradient elasticity within the symmetric BEM formulation
2014
The symmetric Galerkin Boundary Element Method is used to address a class of strain gradient elastic materials featured by a free energy function of the (classical) strain and of its (first) gradient. With respect to the classical elasticity, additional response variables intervene, such as the normal derivative of the displacements on the boundary, and the work-coniugate double tractions. The fundamental solutions - featuring a fourth order partial differential equations (PDEs) system - exhibit singularities which in 2D may be of the order 1/ r 4 . New techniques are developed, which allow the elimination of most of the latter singularities. The present paper has to be intended as a resear…
An energy residual-based approach to gradient effects within the mechanics of generalized continua
2012
AbstractGeneralized continua exhibiting gradient effects are addressed through a method grounded on the energy residual (ER)-based gradient theory by the first author and coworkers. A main tool of this theory is the Clausius-Duhem inequality cast in a form differing from the classical one only by a nonstandard extra term, the (nonlocality) ER, required to satisfy the insulation condition (its global value has to vanish or to take a known value). The ER carries in the nonlocality features of the mechanical problem through a strain-like rate field, being the specific nonlocality source, and a concomitant higher-order long-range stress (or microstress) field. The thermodynamic restrictions on …